
A Lagrangian of the quasi-rigid extended charge

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 2053

(http://iopscience.iop.org/1751-8121/40/9/011)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/9
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 2053–2061 doi:10.1088/1751-8113/40/9/011

A Lagrangian of the quasi-rigid extended charge

Rodrigo Medina

Instituto Venezolano de Investigaciones Cientı́ficas, Apartado 21827, Caracas 1020A, Venezuela

E-mail: rmedina@ivic.ve

Received 15 November 2006, in final form 18 January 2007
Published 14 February 2007
Online at stacks.iop.org/JPhysA/40/2053

Abstract
A Lagrangian is proposed for the quasi-rigid extended charged particle, which
consists of a bare point particle term plus the standard electromagnetic minimal
coupling. The quasi-rigid motion is imposed as a constraint. The extension
of the particle and the quasi-rigid motion appear inside the current density.
The Lorentz contraction of the extended particle makes the interaction term
dependent on the acceleration. This dependence produces the additional
terms in the equations of motion that are necessary for the proper energy
and momentum conservation, and that were previously identified as the inertial
effects of stress. The momentum of stress is obtained as an explicit function of
the electromagnetic field.

PACS numbers: 03.50.De, 45.20.Jj, 45.40.−f

1. Introduction

In a previous article [1] the electrodynamics of a classical extended charge was studied from
various points of view. It was assumed that the particle follows a quasi-rigid motion. The
main results of that paper are the following.

(1) The 4/3 problem is solved. As it is well known that the momentum and energy of
the electromagnetic fields that surround a spherically symmetric charge distribution
moving with velocity v are respectively 4

3Ueγv/c2 and Ueγ
[
1 + 1

3 (v/c)2
]
, were Ue is the

electrostatic energy and γ = [1 − (v/c)2]−1/2. These values of energy and momentum
do not form a 4-vector and seem to contradict the mass–energy equivalence. One should
expect that the mass of the dressed particle be the bare mass m0 plus the electromagnetic
mass Ue/c

2. It was shown that everything fits in place, once one considers the inertial
effects of the stress that develops inside the particle to balance the electrostatic repulsion.
For a particle moving with no acceleration those effects can be included in a negative
pressure contribution to the mass mP ,

mP = − 1

3c2
Ue. (1)
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So the mass of the dressed particle (bare + stress + bounded fields) has the expected
value m0 + Ue/c

2. The relevance of the inertial effects of stress is also discussed in [2].
In this respect it is worth mentioning the Boyer [3] and Rohrlich [4] controversy that
was not discussed in the previous paper [1]. Boyer claimed that it was wrong to modify
the electromagnetic energy–momentum tensor T µν in order to eliminate the extra 1/3
term. Rohrlich maintained the opposite opinion. The controversy is settled in favour of
Boyer. Rohrlich assumes, in his reply to Boyer, that the interaction that equilibrates the
electrostatic repulsion enters in the equation as a force density, while actually it is the
stress of the particle. The fact that the energy and the momentum of the fields do not form
a 4-vector is due to the fact that not only the particle is stressed, but also the fields that
surround it. T µν should be named more properly as the energy–momentum–stress tensor.

(2) It is established the role played by the various components of the T µν in the energy and
momentum conservation. The fields produced by the particle have two components: the
radiated field that decays as 1/r and the bound field that decays as 1/r2. As the tensor T µν

is quadratic in the field there are three components TBB, TBR and TRR . The radiation term
TRR gives the energy and momentum of the radiated fields. The term TBB corresponds to
the field bounded to the particle and gives the electromagnetic contributions to the dressed
particle. The cross term TBR is also bounded to the particle but it only exists as long
as there is radiation. The radiation reaction contains a term that corresponds to radiated
momentum, but also a term that corresponds to the cross term. This cross term behaves
as reservoir of energy and momentum.

This splitting of T µν was found long ago by Teitelboim [5]. He obtained the Lorentz–
Abraham–Dirac (LAD) radiation reaction formula for a point charge using the retarded
fields. In the cited paper Teitelboim used the energy–momentum conservation law of
the field. The energy–momentum contribution to the dressed particle was calculated in
the reference frame of instantaneous rest of the particle, and then transformed into the
laboratory frame assuming that energy and momentum form a 4-vector. In this way the
stress contribution is suppressed. As everybody else he disregarded the stress contribution
to the mass of the particle. As a result the expected mass of the dressed particle was
obtained (m0 + e2/(2εc2)). In a later paper [6] determined the radiation reaction by
calculating directly the force produced by the self-fields. He obtained the LAD formula,
but now, of course, the electromagnetic mass included the stress contribution and was
2e2/(3εc2). About this discrepancy he wrote in a note: ‘However, there is actually no
difference between the two expressions, since the limit ε → 0 is to be taken’. One cannot
agree with that. Actually, the difference shows that the stress of the field makes a real
contribution to the momentum of the particle.

(3) It is found an exact formula for the radiation reaction of the extended particle. The
self-force is given as an integral over the retarded accelerations. In the R → 0 limit the
LAD result is recovered.

(4) It is found that the solutions of the integro-differential equation of motion that results
when the exact radiation reaction formula is used do not violate causality or run away,
provided that the mass of matter m0 + mP is positive. When the condition

m0 >
Ue

3c2
(2)

is not verified the causality is violated and run-away solutions appear. Therefore the point
particle is inconsistent in classical electrodynamics, as limR→0 Ue = +∞. That is, the
limit R → 0 is not physical as it is interior to a non-physical region. The classical mass
renormalization is also inconsistent. It is impossible to verify (2) and to go to −∞ at the
same time.
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(5) It is shown that for a physical point particle that verifies (2) the exact radiation reaction
formula reduces to the Rohrlich formula [7]. A physical point particle is a particle whose
radius is much smaller than any other distance in the problem, in particular than the
wave-length of the fields that it itself generates. The Rohrlich formula is like the LAD
formula but replacing the acceleration a by the external force F divided by the dressed
mass m.

(6) Finally it is shown that the radiated power of the physical point charge is not given by the
Larmor formula, which is valid for R → 0, but by a modified one.

The conclusion of the previous paper [1] is that the dynamics of a classical quasi-rigid extended
charge, including self-interactions, is, unlike that of a point charge, perfectly consistent and
conforming with causality and conservation of energy and momentum.

The extended particle should have some kind of structure that generates the stress that
balances the electrostatic repulsion. Nevertheless if a particle of radius R moves with an
acceleration which is small in comparison with c2/R, it continuously keeps its spherical shape
as seen in the reference frame of instantaneous rest. In this quasi-rigid motion the internal
dynamics is frozen, so the particle moves as its only three degrees of freedom were the
coordinates of its centre. The quasi-rigid motion corresponds to a constraint that eliminates
the internal degrees of freedom. It has been shown [8] that the pressure mass is the same for
any elasticity model with spherical symmetry, so the elastic properties should not be relevant
in the quasi-rigid limit.

Here we show that the mechanics of the quasi-rigid extended particle can be obtained
from the standard electromagnetic Lagrangian with the minimal coupling. The peculiarity of
the extended particle is that the current density depends on acceleration. This is due to the fact
that as the speed changes the Lorentz contraction changes and that, therefore, different points
of the particle should move with different velocities. Such dependence on the acceleration
is unavoidable. Higher order Lagrangians are rare. One may imagine elasticity models of
the particle that correspond to first order Lagrangians. The interaction which is proportional
to the velocity of each point will also be of first order. It is the quasi-rigid constraint, that
makes the motion of each point of the particle a function of the motion of its centre, what
produces the acceleration dependent interaction. That is the price one has to pay for having
eliminated the internal degrees of freedom.

2. The Lagrangian

We will assume that only electromagnetic forces are acting on the particle, but that, in addition
to the fields generated by the particle itself, there are also those due to some external current
density j

µ
ex. We will use Gauss electromagnetic units and the metric tensor gµν with positive

trace. We will call zµ a generic point of four-space and xµ the coordinates of the centre
of the particle, both in the laboratory frame. The origin of the instantaneous rest frame will be
the centre of the particle while yµ will be the generic point and y = |y|. We will assume that
the particle has a non-zero charge q and that in the instantaneous rest frame it has a constant
relative charge density g(y), which has spherical symmetry and is normalized to 1∫

d3y g(y) = 1. (3)

Each point of the particle can be labelled with its position in the instantaneous rest frame,
yµ. The quasi-rigid motion is defined in [1] so that the position of any point of the particle is
given at any time by

x(y, t) = x(t) + y + δy, (4)
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where δy is the Lorentz contraction

δy = (γ −1 − 1)(y · v̂)v̂. (5)

The quantity γ is calculated with the velocity of the centre v and v̂ is the unit vector in the
direction of v. The actual motion of a point of the particle differs from expression (4) by a
term of order yaR/c2, where a is the acceleration.

Expression (4) can be inverted,

y = z − x + (γ − 1)(z − x) · v̂v̂. (6)

Because δy depends on v, different points of the particle have different velocities as the
particle is accelerated.

v(y, t) = ∂x(y, t)

∂t
(7)

= v(t) + δv(y, t), (8)

where

δvi = ∂δyi

∂t
(9)

= aj

∂δyi

∂vj

. (10)

In the instantaneous rest frame the charge density is ρ = qg(y) and the current density
vanishes. In the laboratory frame the charge density is

ρ(zµ) = qγg(|z − x + (γ − 1)(z − x) · v̂v̂|) (11)

= q

∫
d3y g(y)δ(z − x − y − δy) (12)

and the current density is

j(zµ) = ρ(zµ)(v + δv) (13)

= q

∫
d3y g(y)δ(z − x − y − δy)(v + δv). (14)

In both expressions we have used the fact that d3y = γ d3z. Definitions (11) and (13) are
consistent with the charge conservation ∂µjµ = 0.

We can now write down the Lagrangian we propose, namely

L(x,v,a, t, Aµ) = − 1

16π

∫
d3z FµνFµν − m0c

2γ −1 +
1

c

∫
d3z

(
jµ + jµ

ex

)
Aµ. (15)

The first term is the Lagrangian of electromagnetic fields, the second is the Lagrangian of
a bare point particle and the third is the standard electromagnetic coupling. The fact that the
particle has extension and that its motion is quasi-rigid appears in the current density jµ. The
dependence on the acceleration a is in δv. Using the expressions for the current density,
the interaction term of the Lagrangian can be written as

LI = q

c

∫
d3y g(y)(v + δv) · A(x + y + δy, t) − q

∫
d3y g(y)φ(x + y + δy, t). (16)

It is obvious that this Lagrangian yields the correct Maxwell equations. We will show
that it also gives the correct equations of motion of the particle, but before we will in the next
section recall how to handle Lagrangians that depend on acceleration.
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3. Acceleration dependent Lagrangian

The treatment of higher order Lagrangians was developed by Ostrogradsky in the middle of
19th century [9]. The Hamiltonian approach was made by Govaerts and Rashid [10]. We
resume here the results for an acceleration dependent Lagrangian L(q, q̇, q̈, t). The conjugate
momentum of qi is

pi = ∂L

∂q̇i

− d

dt

∂L

∂q̈i

. (17)

The Euler–Lagrange equations of motion are

dpi

dt
= ∂L

∂qi

. (18)

The quantity ∂L
∂q̈i

behaves as the conjugate momentum of q̇i , so the Hamiltonian is

H =
∑

i

q̇ipi +
∑

i

q̈i

∂L

∂q̈i

− L. (19)

Finally the evolution of H is given by

dH

dt
= −∂L

∂t
. (20)

4. Equations of motion

In this section we obtain the equations of motion of the Lagrangian (15). The conjugate
momentum of x is

pi = ∂L

∂vi

− d

dt

∂L

∂ai

. (21)

From (16) and (10) we obtain

∂L

∂ai

= q

c

∫
d3y g(y)

∂δvj

∂ai

Aj (22)

= q

c

∫
d3y g(y)

∂δyj

∂vi

Aj , (23)

and

d

dt

∂L

∂ai

= q

c

∫
d3y g(y)

∂δyj

∂vi

[
∂Aj

∂t
+ (vk + δvk)

∂Aj

∂xk

]
+

q

c

∫
d3y g(y)ak

∂2δyj

∂vk∂vi

Aj . (24)

On the other hand from (15), (16) and (10) we get

∂L

∂vi

= m0γ vi +
q

c

∫
d3y g(y)Ai +

q

c

∫
d3y g(y)

∂δvj

∂vi

Aj

+
q

c

∫
d3y g(y)

∂δyj

∂vi

[
(vk + δvk)

∂Ak

∂xj

− c
∂φ

∂xj

]
. (25)

The conjugate momentum is then

pi = m0γ vi +
q

c

∫
d3y g(y)Ai + q

∫
d3y g(y)

∂δyj

∂vi

[E + c−1(v + δv) × B]j , (26)

where E and B are the electrical and magnetic fields respectively.
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The first term of (26) is the momentum of the bare particle, the second term is the usual
vector potential contribution which is also present for the point particle, but in this case it
is averaged over the whole particle. The last term is distinctive of the extended quasi-rigid
particle. So, we will define the momentum of constraint as

pCi = q

∫
d3y g(y)

∂δyj

∂vi

[E + c−1(v + δv) × B]j . (27)

The largest contribution to the constraint momentum comes from the electrostatic
repulsion of the charges of the particle. We will call momentum of matter pM the sum
of the bare momentum plus the constraint momentum

pM = m0γv + pC. (28)

With these definitions the conjugate momentum is

p = pM +
q

c

∫
d3y g(y)A. (29)

The equation of motion of pM is obtained from (18)

ṗM = ṗ − q

c

d

dt

∫
d3y g(y)A (30)

= ∂L

∂x
− q

c

∫
d3y g(y)

d

dt
A (31)

= q

c

∫
d3yg(y)

[
∇(v + δv) · A − c∇φ − ∂A

∂t
− (v + δv) ·∇A

]
(32)

= q

∫
d3y g(y)[E + c−1(v + δv) × B] (33)

=
∫

d3z(ρE + c−1j × B). (34)

To call pM the momentum of matter is justified by the fact that its time derivative is the
integral of the force density. Note that it is different from the dressed particle momentum,
which in addition includes the momentum of the fields that surround the particle. The equation
of motion (34) is similar to equation (14) of [1], but there instead of pC one has the momentum
of stress mP γv. In [1, 8] the mass of stress mP is calculated from the stress tensor of the
particle, and the stress is determined from the stability condition of the particle. Instead
expression (27) gives the momentum of stress as an explicit function of the fields.

5. Energy equation

The energy is obtained from (19),

E = v ·p + a · ∂L

∂a
− L (35)

= m0c
2γ + v · pC + q

∫
d3y g(y)φ. (36)

The first term is the bare particle energy, the last one is the electrostatic potential energy
and the second term is a contribution due to the constraint. As for the momentum we define the
energy of matter as the sum of the bare particle contribution plus the constraint contribution

EM = m0c
2γ + v ·pC. (37)

Note that EM and pM do not form a 4-vector.
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The time evolution of energy is obtained using (20)

dEM

dt
= −∂L

∂t
− q

∫
d3y g(y)

∂φ

∂t
(38)

= q

∫
d3y g(y)

[
−c−1(v + δv) · ∂A

∂t
+

∂φ

∂t
− dφ

dt

]
(39)

= −q

∫
d3y g(y)(v + δv) ·

(
c−1 ∂A

∂t
+ ∇φ

)
(40)

= q

∫
d3y g(y)(v + δv) · E (41)

=
∫

d3z j · E. (42)

The time derivative of EM is the integral of power density. This last equation corresponds
to equation (17) of [1]. The pressure contribution to the energy that appears there can be
written as mP γ v2, which is consistent with the constraint term of (36).

6. Identity of the stress momentum and the constraint momentum

In this section we will calculate the constraint momentum with the same approximations
that were used in [1], that is: (1) the size of the particle is small in comparison with the
external currents, so the external fields can be considered constant inside the particle; (2) the
dependence on acceleration will be neglected. With these conditions the only contributions to
the constraint momentum in (27) come from the electrostatic self-field. In the rest frame the
magnetic self-field vanishes, while the electric field is

E = q
Q(y)

y2
ŷ (43)

where Q(y) is

Q(y) =
∫ y

0
dy 4πy2g(y). (44)

In the laboratory frame, expressed in terms of the coordinate of the rest frame y, the
electric and magnetic self-fields are

E = q
Q(y)

y2
[γ ŷ + (1 − γ )(ŷ · v̂)v̂] (45)

and

B = γ q

cy2
Q(y)v × ŷ. (46)

As a = 0 then δv = 0, so the bracket in (27) is

E + c−1v × B = q
Q(y)

y2
[γ −1ŷ + (1 − γ −1)(ŷ · v̂)v̂]. (47)

On the other hand

∂δyj

∂vi

= − yv

c2(γ −1 + 1)
[(γ − 1)(ŷ · v̂)v̂i v̂j + ŷi v̂j + (ŷ · v̂)δij ]. (48)
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Therefore, from (47) and (48)

∂δyj

∂vi

[E + c−1v × B]j = −qQ(y)

c2y
[(γ − 1)(ŷ · v̂)2vi + (v · ŷ)ŷi]. (49)

As the particle has spherical symmetry, in doing the integral of (27) one can first integrate
the solid angle, and then the radial coordinate. The spherical average of (49) is readily obtained
using the fact that

1

4π

∫
d	ŷi ŷj = 1

3
δij . (50)

The average is

1

4π

∫
d	

∂δyj

∂vi

[E + c−1v × B]j = −qQ(y)γ

3c2y
vi (51)

and therefore the constraint momentum is

pC = −q2γ

3c2

∫
d3y

g(y)Q(y)

y
v. (52)

The integral in (52) is proportional to the electrostatic energy
∫

d3y
g(y)Q(y)

y
=

∫
dQ

Q(y)

y
(53)

= Q(y)2

2y

∣∣∣∣
∞

0

+
1

2

∫
dy

Q(y)2

y2
(54)

= 1

8πq2

∫
d3yE2 (55)

= q−2Ue. (56)

The constraint momentum is then

pC = mP γv (57)

where mP is given in (1). It is exactly the same expression of the momentum of stress that was
given in [1, 8]. The energy of matter EM is also the same that appears in equation (17) of [1],

EM = m0c
2γ + mP γ v2 (58)

= (m0 + mP )c2γ − mP c2γ −1. (59)

7. Conclusion

We have shown that the standard electromagnetic Lagrangian with minimal coupling jµAµ

yields the proper behaviour of the quasi-rigid extended particle. The internal degrees of
freedom are not included; instead the quasi-rigid motion is imposed as a constraint. The
velocities of different parts of the particle are different when the particle is accelerated, so the
current density j and the Lagrangian depend on acceleration. This fact produces additional
terms in the momentum and energy of the particle that are the same that were found in the
previous work [1] to be the inertial effects of stress. These additional terms exactly cancel the
additional terms in the energy and momentum of the self-fields that surround the particle, and
therefore the dressed particle (bare particle + constraint + surrounding fields) has a standard
momentum–energy 4-vector corresponding to the expected mass m0 + Ue/c

2. All the results
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of [1], in particular the correct radiation reaction formula, are consistent with the present
Lagrangian formulation.

To have found a proper Lagrangian theory is the first step towards the quantization of the
extended quasi-rigid particle, but the quantization of acceleration-dependent Lagrangians is
not straightforward. A possible path that may be followed in order to achieve this goal could
be to convert the Lagrangian to a first order one by considering the velocity v as a generalized
coordinate independent from x and to impose the condition ẋ = v as a constraint by means
of Lagrange’s multipliers. Such singular Lagrangian could be quantized using Dirac’s method
[10].
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